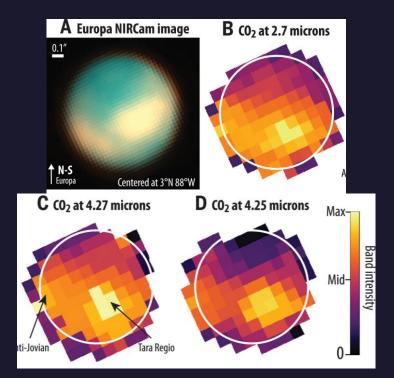
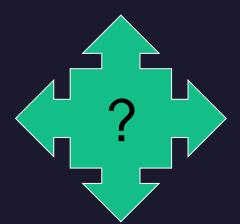
Building an Onboard AI for Future Astrobiology Mission Science

Wayne Yu Code 595: Navigation & Mission Design Branch NASA GSFC

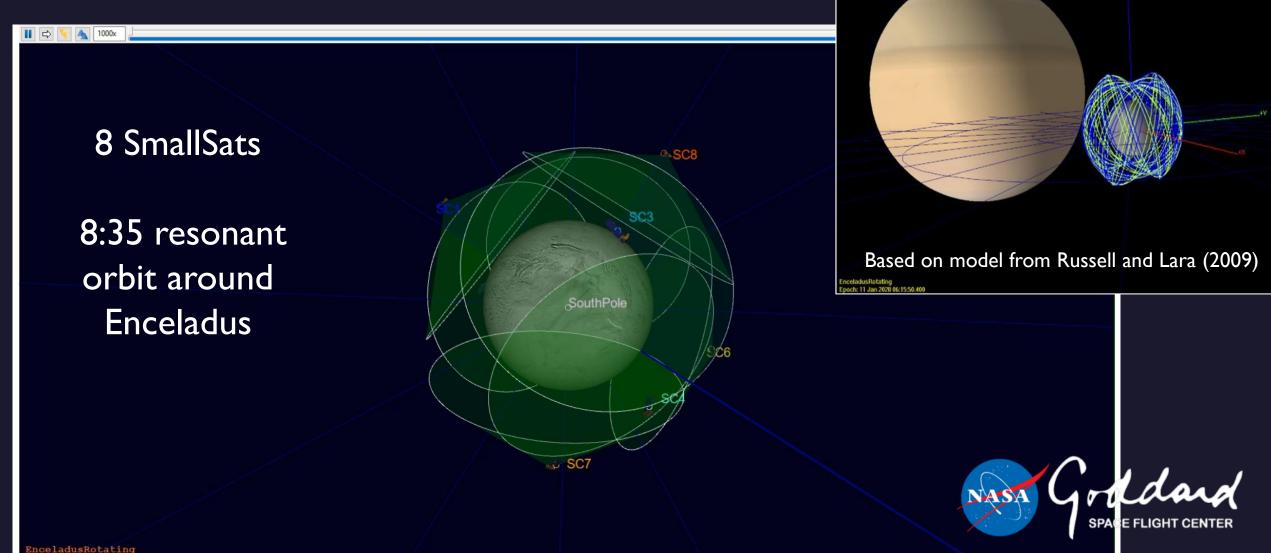


AI Capabilities Enable

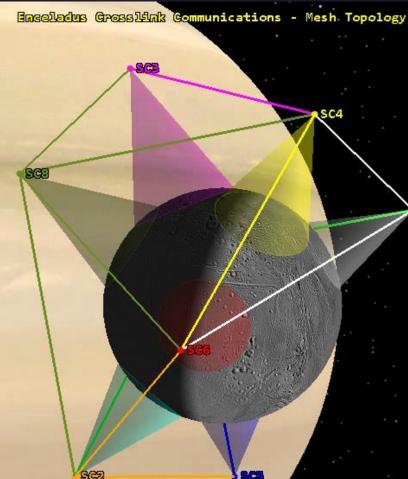
Investigation of Novel Events : e.g., (cryo)tectonism / volcanism


Europa (from Gallileo): NASA/JPL-Caltech/SETI Institute React to Observations of Interest : e.g., volatiles, plumes

CO₂ Ice detected on Europa (JWST): Villanueva et al. (2023): Science React to Potential Biosignatures


Opportunistic Science

Ocean Worlds Case Study Enceladus



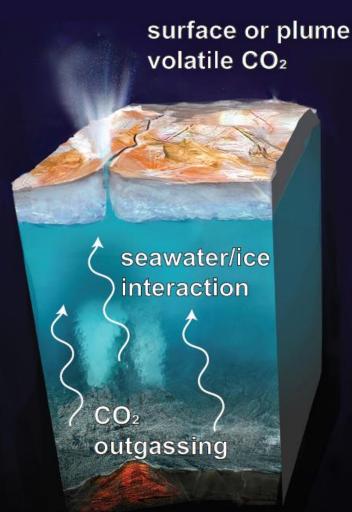
First Stable Enceladus SmallSat Constellation Model

Encel: 01 Jap 2028 00:00:00 000

Communication Pathways Model

Spacecraft – spacecraft communication links during orbit

Cone of observation



පිත්විගානය

Enceladus Inertial Axes 1 Jan 2028 03:42:01.899

Mass spectrometry data from Enceladus (and Europa) laboratory experiments

Theiling (2021): Icarus Da Poian et al. (2023): Frontiers Ast. Space Sci.

Theiling et al. (in prep) Clough et al. (in prep)

Enceladus Case Study: Biosignature Detection & Response

	SC 2	SC I	Mothership	
\mathcal{P}	PROBLEMS OUTPUT DEBUG CON	NSOLE TERMINAL PORTS	() python3 + ~ □ □ □ ···	W. M. Co. C. M.
ç	he following object is masked from 'package:	R[write to console]:	R[write to console]:	· Vill Partick in the
â	stats': filter	Attaching package: 'is oreader'	Attaching package: 'i soreader'	. A period
₿	R[write to console]: L	R[write to console]: T he following object is	R[write to console]: The following object	
因	oading required packag e: ggplot2	<pre>masked from 'package: stats':</pre>	is masked from 'packa ge:stats':	
R	R[write to console]: R Studio Community is a great place to get hel	filter	filter	· 7/6- 20
	p: https://community.rstu dio.com/c/tidyverse	R[write to console]: L oading required packag e: ggplot2	R[write to console]: Loading required pack age: ggplot2	. AREASY
8	R[write to console]: L oading required packag e: lattice	R[write to console]: L oading required packag e: lattice	R[write to console]: Loading required pack age: lattice	· Ray was here
\$03 \$03	Enter Orbiter Number: 2 ∏	Enter Orbiter Number: 1 ∏	Enter Orbiter Number: 0	
<mark>≫</mark> ⊗ c	o∆o %ao			

Consensus-based decision-making based on ML models

Onboard Science AI Autonomous Response to Science Observations

Using Multiple Models for a Consensus-Based Decision during a SmallSat Constellation Mission at Enceladus

Implementation for Astrobiology Missions

Intelligent Sensing & Response

Manage Mission Constraints

Transfer Knowledge Across Systems

Autonomous Navigation, Guidance, and Control

Data Prioritization

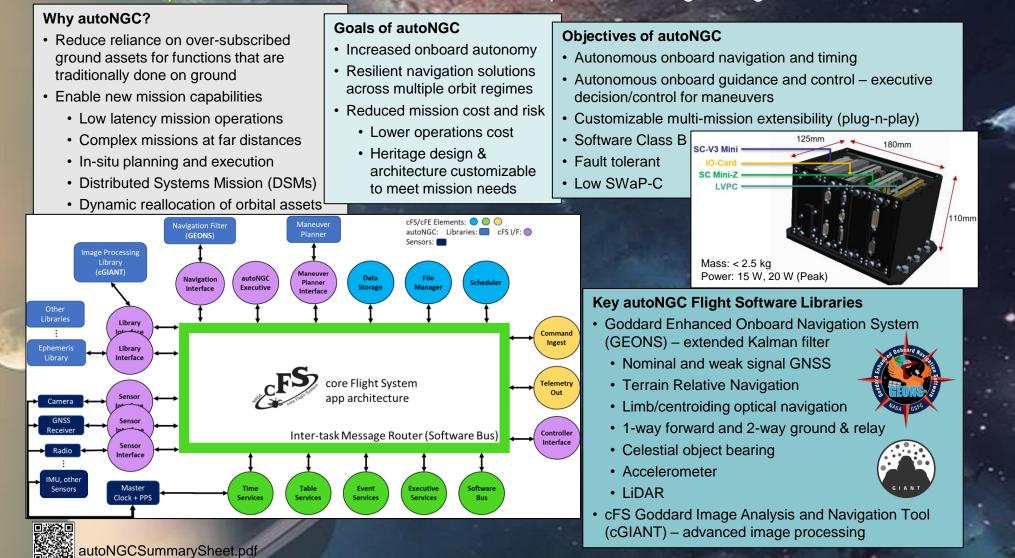
Mission Resilience

Whole System

Enceladus

Mars

Europa


Jupiter

autoNGC

Autonomous Navigation, Guidance, and Control

An onboard software application suite built on the core Flight System (cFS) and a flight hardware implementation for real-time autonomous spacecraft navigation, guidance and control

Future / Next Steps

Integrate more challenging decision-making into framework

- Simulated environments \rightarrow enables collaboration between spacecraft telemetry with science
- Deploy with hardware
- Conduct field tests

... Deploy in space!

Acknowledgements

Bethany Theiling (GSFC), Lily A. Clough (GSFC/Aurora/Univ. of Tulsa), Pavel Galchenko (GSFC), Fredrick Naikal (GSFC), Victoria Da Poian (GSFC/Tyto Athene), Brett A. McKinney (Univ. of Tulsa), James MacKinnon (GSFC) and Evana Gizzi (GSFC)

The Distributed Systems Missions (DSM) Initiative Team at NASA GSFC

<u>Undergraduate Interns:</u> Connor Williams (University of Tulsa) Leyton McKinney (University of Tulsa)

Funding:

Internal Scientist Funding Model (ISFM) Fundamental Laboratory Research (FLaRe) at NASA GSFC Internal Research and Development (IRAD) at NASA GSFC

dand

Thank you!

oddard

Wayne Yu JWST Flight Dynamics Lead

- Email: <u>wayne.h.yu@nasa.gov</u>
- NASA GSFC Missions (2009 Present)
 - James Webb Space Telescope (Flight Dynamics Lead)
 - SEXTANT: X-Ray Pulsar Navigation Tech Demo (Navigation, Filter Design, Operations)
 - ARTEMIS: 2 spacecraft Lunar Libration Orbiters (Trajectory Design, Operations)
 - MMS: 4 spacecraft Elliptical Formation Flying Mission (Trajectory Design)
- University of Maryland M.S. with Thesis 2015
 - Title, "Application of X-Ray Pulsar Navigation: A Characterization of the Earth Orbit Trade Space"

