Neil Gehrels Swift Observatory: A Key Player in the Multi-Messenger Era

Bindu Rani

Swift GI Lead

bindu.rani@nasa.gov

Credit: https://hubblesite.org/contents/articles/the-electromagnetic-spectrum

Telescopes in Space?

https://physics.stackexchange.com/questions/135260/can-someone-explain-to-me-the-concept-of-atmosphere-opacity

Why Observe in Multiple Wavelengths?

In visible light

Sun across different wavelengths

The Sun in different wavelengths reveals unique aspects of its structure and activity.

M87 in different wavelengths

M87 in different wavelengths

Swift Observatory

Launched on 20 November 2004

Burst Alert Telescope (BAT): 15-350 keV, 1.4 sr fieldof-view, ~ 3' localization

X-Ray Telescope (XRT): 0.2-10.0 keV, 24' x 24' fieldof-view, 3" localization

UV/Optical Telescopes (UVOT): 170-650 nm, 17' x 17' field-of-view, 0.5" localization

https://swift.gsfc.nasa.gov/about_swift/

- **1.** Exoplanets
- **2.** Brown Dwarfs
- **3.** Stellar Flares
- **4.** Pulsars and Magnetars
- 5. Novae
- **6.** X-ray Binaries
- 7. Supernovae
- 8. Star-forming Regions
- 9. Gamma-ray Bursts
- **10.** Tidal Disruption Events
- **11.** Active Galactic Nuclei
- **12.** Clusters of Galaxies
- **13.** And more ..

10,000 times more powerful than solar flares

- 4. Pulsars and Magnetars
- 5. Novae
- **6.** X-ray Binaries
- 7. Supernovae
- 8. Star-forming Regions
- **9.** Gamma-ray Bursts
- **10.** Tidal Disruption Events
- **11.** Active Galactic Nuclei
- **12.** Clusters of Galaxies

13. And more ...

On April 23, 2014, NASA's Swift mission detected a record-setting series of X-ray flares unleashed by DG CVn, a nearby binary consisting of two red dwarf stars (Osten et al. 2016, ApJ, 832).

- **1.** Exoplanets
- **2.** Brown Dwarfs
- **3.** Stellar Flares
- 4. Pulsars and Magnetars
- 5. Novae
- **6.** X-ray Binaries
- 7. Supernovae
- 8. Star-forming Regions
- 9. Gamma-ray Bursts
- **10.** Tidal Disruption Events
- **11.** Active Galactic Nuclei
- **12.** Clusters of Galaxies
- **13.** And more ...

The Brightest of All Time gamma-ray burst (**BOAT GRB**), likely marking the birth of a new black hole, was discovered by Swift and Fermi on Oct. 9, 2022, and observed by about 50 space- and ground-based telescopes.

- **1.** Exoplanets
- **2.** Brown Dwarfs
- **3.** Stellar Flares
- 4. Pulsars and Magnetars
- 5. Novae
- **6.** X-ray Binaries
- 7. Supernovae
- 8. Star-forming Regions
- 9. Gamma-ray Bursts
- **10.** Tidal Disruption Events
- **11.** Active Galactic Nuclei
- 12. Clusters of Galaxies
- **13.** And more ...

Swift captures a black hole eating a star

Credit: NASA universe

When a star strays too close to a monster black hole, gravitational forces create intense tides that break the star apart into a stream of gas.

Multi-Wavelength ┿ Multi-Messenger Astronomy

Multi-messenger era

Gravitational waves

Swift's <u>Ultraviolet/Optical Telescope</u> (UVOT) detected the first observation of UV emission from a kilonova.

Aug 2017

Neutrinos

290 TeV neutrino coincides with highenergy flare in TXS 0506+056

Sept 2017

https://www.science.org/doi/10.1126/science.aap9580

Swift in Multi-messenger era

Gravit

Unique Rapid Response Capability

- a GW170817 ©
- Swift's <u>U1</u> detected t emission 1

• Swift's fast detection and response time sets it apart from other observatories.

Crucial for Multi-Messenger Observations

Plays a key role in observing transient events, such as GRBs, TDEs, GW, flaring AGN, and others.

Simultaneous X-ray/UV-optical Observations

Swift provides nearly simultaneous X-ray and UV/optical observations, offering a comprehensive view of transients.

Collaborations for Deeper Insights

• Works with more than 30 ground- and space-based observatories.

Requesting Swift time

Guest Investigator Program :

https://swift.gsfc.nasa.gov/proposals/swiftgi.html

Annual call (mid/late September)

Awards funding and observing time

Any number of targets

Up to 1 Ms of observing time (per program)

Proposals are due Thursday, September 26, 2024, 4:30 PM EDT.

Requesting Swift time

Guest Investigator Program :

https://swift.gsfc.nasa.gov/proposals/swiftgi.htm

Annual call (mid/late September)

Awards funding and observing time

Any number of targets

Up to 1 Ms of observing time (per program)

Proposals are due Thursday, September 26, 2024, 4:30 PM EDT.

Target-of-Opportunity Program:

Accepted anytime

Awards only observing time

Single target per request

Typically < 10 ks per request

Other missions

Time-domain, Imaging, Spectroscopy, Polarimetry, etc.

Research opportunities

1. NASA Internship Programs:

https://www.nasa.gov/learning-resources/internship-programs/

2. NASA DEVELOP National Program

https://appliedsciences.nasa.gov/what-we-do/capacity-building/develop

3. NASA Space Grant

https://www.nasa.gov/learning-resources/national-space-grant-college-and-fellowship-project/

4. NASA GeneLab for Students (GL4U)

https://genelab.nasa.gov/genelab-universities-gl4u

5. NASA STEM Engagement

https://www.nasa.gov/learning-resources/

6. And others ...

Astronomer's Life Cycle

Physics Bachelor

Bindu Rani

Swift GI Lead Scientist

<u>bindu.rani@nasa.gov</u>

Thank you for being here today!